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Background The Geometric Thin-Film Equation

The Geometric Thin-Film Equation
Fix α > 0. The Geometric Thin-Film Equation is given by

∂th + ∂x(hh̄2∂xxx h̄) = 0 where h̄ = K ∗ h (GTFE)

in the region Ω := R+ × R, with initial data h(0) = µ ∈ BM+(R).

Here, the measure-valued function h : R+ → M(R) represents the basic free-surface height,

K (x) :=
1

4α2 (α+ |x |)e−|x|/α

is the Green’s function for the bi-Helmholtz problem (1 − α2∂xx)
2K (x) = δ(x), and

h̄(t , x) =

∫ ∞

−∞
K (x − z) dh(t)(z)

is a smoothened version of the basic free-surface height.

Ó Náraigh and Pang introduced (GTFE) as a novel regularization of the thin-film equation

∂th = −∂x(h3∂xxxh)

in one spatial variable.
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Background The weak form of (GTFE)

The weak form of (GTFE)
The pair (h, h̄) is a weak solution of (GTFE) if it satisfies. . .

∫ ∞

−∞
ϕ(t ,0) dh(0) +

∫ ∞

0

∫ ∞

−∞
h̄(1 − α2∂xx)

2ϕt dx dt +
∫ ∞

0

∫ ∞

−∞
h̄3∂xxx h̄ϕx dx dt

− 2α2
∫ ∞

0

∫ ∞

−∞
h̄2∂xx h̄∂xxx h̄ϕx dx dt − α4

∫ ∞

0

∫ ∞

−∞
h̄∂x h̄(∂xxx h̄)2ϕx dx dt

− 1
2
α4

∫ ∞

0

∫ ∞

−∞
(h̄∂xxx h̄)2ϕxx dx dt = 0, (W)

for all indefinitely differentiable and compactly-supported test functions ϕ ∈ C∞
c (Ω).

Problem
1 Given initial data h(0) = µ ∈ BM+(R), does (W) have a solution (h, h̄) in Ω?
2 If so, what is the regularity of h̄?
3 Finally, to what extent is the solution unique?
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Background A potential difficulty!

A potential difficulty!
Equation (W) involves derivatives of order three and above, but K is only twice classically differen-
tiable and

K ′′′(x) =
1

4α2

(
2 sgn(x)

α2 − x
α3

)
e−

|x|
α , x ̸= 0,

is undefined and has no limit at the origin.

Loosely speaking, it follows that:

1 standard existence theorems requiring Lipschitz or continuous kernels don’t apply;
2 ideally solutions should avoid this point of discontinuity to prevent bad behaviour.
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Existence Our approach to establishing existence

Our approach to establishing existence
1 Write h(t) as a push-forward measure

h(t) = c(t , ·)∗µ,
∫ ∞

−∞
f (x) dh(t)(x) =

∫ ∞

−∞
f (c(t , x)) dµ(x),

for some Borel function c : R+ × M → R to be determined, where M is a closed set such that
suppµ ⊆ M ⊆ R.

2 To avoid problems with K ′′′ at the origin, require that c satisfies a ‘no-crossing’ condition:

c(t , x) < c(t , y) whenever x , y ∈ M, x < y , (NC)

i.e. c(t , ·) is strictly increasing on M for all t ∈ R+.

3 Identify an ODE system such that, when satisfied by c, the corresponding push-forward h is a
solution of (W) with initial data h(0) = µ.

4 Prove that the ODE system has a solution c satisfying (NC).
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Existence The ODE system

The ODE system
Theorem 1
Let c : R+ × M → R satisfy (NC) andct(t , x) = h̄(t , c(t , x))2

∫
z ̸=x

K ′′′(c(t , x)− c(t , z)) dµ(z)

c(0, x) = x
, (t , x) ∈ (0,∞)× M. (ODE)

Then h is a solution of (W).

1 We have h̄(t , c(t , x)) = (K ∗ h(t))(c(t , x)) =

∫ ∞

−∞
K (c(t , x)− c(t , z)) dµ(z).

2 If c solves (ODE) then necessarily the paths c(·, x) are C1 for all x ∈ M.

3 The condition c(0, x) = x , x ∈ M, implies h(0) = c(0, ·)∗µ = µ.

4 As c(t , ·) is strictly increasing, c(t , x)− c(t , z) ̸= 0 for z ̸= x , so we avoid the undefined K ′′′(0).
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Existence Solutions of (ODE) step 1: particle solutions

Solutions of (ODE) step 1: particle solutions
In the first step we assume µ is a ‘pseudo-particle’ to write (ODE) as a finite ODE system.
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Existence Solutions of (ODE) step 1: particle solutions

Solutions of (ODE) step 1: particle solutions
In the first step we assume µ is a ‘pseudo-particle’ to write (ODE) as a finite ODE system.

Consider µ =
∑N

i=1 wiδai , where a1 < · · · < aN , wi ≥ 0, 1 ≤ i ≤ N, and 0 <
∑N

i=1 wi ≤ 1.
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i=1 wiδai , where a1 < · · · < aN , wi ≥ 0, 1 ≤ i ≤ N, and 0 <
∑N

i=1 wi ≤ 1.

Set M = {a1, . . . ,aN} ⊇ suppµ and define xi(t) = c(t ,ai), 1 ≤ i ≤ N.
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∑N

i=1 wi ≤ 1.

Set M = {a1, . . . ,aN} ⊇ suppµ and define xi(t) = c(t ,ai), 1 ≤ i ≤ N.

Then (ODE) becomesẋi(t) =
(∑N

j=1 wjK (xi(t)− xj(t))
)2 (∑

j ̸=i wjK ′′′(xi(t)− xj(t))
)
,

xi(0) = ai

t > 0, 1 ≤ i ≤ N. (FODE)
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(∑N
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)
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xi(0) = ai
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(∑N
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)2 (∑

j ̸=i wjK ′′′(xi − xj)
)
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Proposition 3
There exists a unique solution x : R+ → D of (FODE).

Equivalently, c : R+ × M → R, given by c(t ,ai) = xi(t), 1 ≤ i ≤ N, is the unique solution of (ODE)
with initial data µ =

∑N
i=1 wiδai .
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Existence Solutions of (ODE) step 2: convergence of particle solutions

Solutions of (ODE) step 2: convergence of particle solutions
Theorem 4
Given µ = BM+(R), there exists an increasing sequence of finite sets MN ⊆ R and measures µN ,
suppµN ⊆ MN , such that the corresponding sequence of particle solutions cN : R+ × MN → R
‘converges’ to c : Ω → R that satisfies (NC) and solves (ODE) with initial data µ.

1 The µN satisfy µN
w∗

→ µ (via the identification M(R) = C0(R)∗), but some stronger convergence
behaviour is needed in the proof.

2 The proof is reminiscent of that of Helly’s selection theorem.

3 Some careful estimates (established by analysing K ,K ′′′ and using Grönwall’s Lemma) are
needed to ensure that c satisfies (NC).

4 Further estimates (obtained using the ‘strong’ convergence mentioned above) are needed to
show that the sequence of sums in (FODE) converge to the integral in (ODE).
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Regularity of solutions Regularity of solutions

Regularity of solutions
Now that the existence of weak solutions of (GTFE) have been established, it’s necessary to deter-
mine the regularity of the smoothened version h̄ of the basic free-surface height h.

Let H3(R) denote the Hilbert-Sobolev space of functions f : R → R whose weak derivatives up to
order 3 exist and have finite L2-norm.

Let C0, 1
2

b (R+;H3(R)) denote the space of 1
2 -Hölder continuous functions u : R+ → H3(R) that are

bounded in the sense that supt∈R+ ∥u(t)∥ < ∞.

Theorem 5
Let c : Ω → R satisfy (NC) and solve (ODE). Then h̄(t , ·) = K ∗ h(t) ∈ H3(R) for all t ∈ R+.

Moreover h̄ ∈ C0, 1
2

b (R+;H3(R)), via the identification h̄(t) = h̄(t , ·).

1 That K ∗ h(t) ∈ H3(R) follows from the fact that K ∗ µ = T ∗µ, where T : H3(R) → C0(R) is
defined by (Tf )(x) = ⟨K (· − x)|f ⟩H3(R), x ∈ R.

2 The 1
2 -Hölder continuity follows from the fact that h : R+ → BM(R) is Lipschitz with respect to a

Wasserstein-like metric.
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Uniqueness of solutions Uniqueness of solutions

Uniqueness of solutions
Theorem 6
Let c, c′ : Ω → R satisfy (NC) and solve (ODE) with the same initial data. Then c = c′, giving h = h′.

1 First a local uniqueness result is established, followed by the global one.

2 The local result is obtained by considering a map on a suitable Fréchet space having contraction-
like properties.

3 There exist solutions h ̸= h′ of (W) both having initial data δ0, that (necessarily) are not both of
the push-forward form described above. So solutions of (W) are not unique in general.
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Summary of main results Summary of main results

Thank you for listening! Summary of main results
Theorem 1
The basic free-surface height h solves (W) if c : R+ × M → R satisfies (NC) and solves (ODE):

ct(t , x) = h̄(t , c(t , x))2
∫

z ̸=x
K ′′′(c(t , x)− c(t , z)) dµ(z), c(0, x) = x , (t , x) ∈ (0,∞)× M.

Theorem 4
There is a function c : Ω → R that satisfies (NC) and solves (ODE) with initial data µ ∈ BM+(R).

Theorem 5

Let c : Ω → R satisfy (NC) and solve (ODE). Then h̄ ∈ C0, 1
2

b (R+;H3(R)).

Theorem 6
Let c, c′ : Ω → R satisfy (NC) and solve (ODE) with the same initial data. Then c = c′, giving h = h′.
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